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Preface

A committee whose roster appears on the title page wrote this report. The

committee members were drawn from various NASA LaRC organizations. J.
Sobieski served as the Committee Chairman. The committee's task was to examine

the impact of the new computer architectures on computing in engineering in

general, and more specifically on the computational support of the aerospace

vehicle design process. It was formed in September 1998 by Douglas Dwoyer,

Director of the LaRC Research and Technology Group, and completed its work in
December 1998.
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Abstract

This report documents findings and recommendations by the Ultrafast Computing

Team (UCT). In the period 10-12/98, UCT reviewed design case scenarios for a

supersonic transport and a reusable launch vehicle to derive computing

requirements necessary for support of a design process with efficiency so radically

improved that human thought rather than the computer paces the process.

Assessment of the present computing capability against the above requirements

indicated a need for further improvement in computing speed by several orders of

magnitude to reduce time to solution from tens of hours to seconds in major

applications. Evaluation of the trends in computer technology revealed a potential

to attain the postulated improvement by further increases of single processor

performance combined with massively parallel processing in a heterogeneous

environment. However, utilization of massively parallel processing to its full

capability will require redevelopment of the engineering analysis and optimization

methods, including invention of new paradigms. To that end UCT recommends

initiation of a new activity at LaRC called Computational Engineering for

development of new methods and tools geared to the new computer architectures

in disciplines, their coordination, and validation and benefit demonstration

through applications



Vision

Computing that underlies the engineering design should be so capable that it no
longer acts as a brake on the flow of creative human thought in the design process.
The capability of the human mind to formulate concepts and digest data rather than
the computing would then pace that process.

Compute as fast as the engineers can think!
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O. Glossary

CAS

CE

CET

CORBA

COTS

EDOF

ETTS

FEA

FEM

FLOPS

HPCCP

HSCT

IIOP

IT

ISE

NRA

PDE

RLV

SAND

UCT

Computational AeroSciences, a subset of HPCCP.

Computational Engineering
CE Team

Common Object Request Broker Architecture
Commercial Off-the-Shelf

Elastic Degrees of Freedom

Elapsed Time to Solution is the wall clock time elapsed from input to

output of a computing job.

Finite Element Analysis

Finite Element Model, the input to FEA.

Floating Point Operations per Second (see note below on computing

speed)

High Performance Computing and Communication Program, a

federally-funded research program.

High Speed Civil Transport, a supersonic transport aircraft.
Internet Inter-ORB Protocol

Information Technology

Intelligent Synthesis Environment, a new NASA research and

technology development program
NASA Research Announcement

partial differential equations
Reusable Launch Vehicle.

Simultaneous Analysis and Design

Ultrafast Computing Team

Note on computing speed, measured in FLOPS:

• CPU or processor speed quantifies the processing capacity of an isolated processor.

• peak speed of a multiprocessor computer equals the processor speed times the

number of processors

• effective speed of a multiprocessor computer equals the peak speed reduced

(usually very substantially) by the data transfer overhead.

Other terms used locally are defined where they first occur.
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1.0 Introduction and Executive Summary

This document summarizes the deliberations, findings, and recommendations of

the Ultrafast Computing Team (UCT). The UCT was formed in September 1998 at

the instigation of Douglas Dwoyer, Director of the LaRC Research and Technology

Group, and concluded its work in December 1998.

The UCT charge was to examine the impact of the new computer architectures on

computing in engineering in general, and more specifically on the computational

support of the aerospace vehicle design process. There were two reasons to be

concerned about the impact. One reason was the mounting evidence from ongoing

projects, at NASA and in the aerospace industry, that the computing capabilities de-

livered by the current combination of the computer hardware and the engineering

analysis and optimization methods fall far short of what is needed for reliable and

timely design processes accounting for both the vehicle physics and the vehicle life-

cycle requirements. The other reason was a recognition that the computer software

and hardware technology is rapidly changing toward a massively heterogeneous

environment of diverse machines ranging from a single processor palmtop to a

supercomputer containing thousands of processors, all unified in intelligent

networks. That new trend offers a tremendous opportunity to lift the computational

support of engineering design to a new, radically higher level of capability.

To fulfill its charge UCT began (Section 2) with two user scenarios, one for a

supersonic transport and one for a reusable launch vehicle. Each scenario described

a particular design situation that called for certain computations to be done in

support of design decisions, and was used to derive computational requirements for

major disciplines in terms of computing speed, time-to-solution, storage require-

ments, etc. When these requirements were compared to the capabilities currently

available it was found that further progress by several orders of magnitude is needed

to make the computing underlying the design process so capable that it would no

longer act as a brake on the flow of creative human thought.

Given the broad spectrum of the vehicle technologies involved in the user

scenarios, the vast dimensions of the computer technology, and the limited time

and resources for the task, UCT had to be selective in its focus. Consequently, the

report concentrates on the user requirements and computer technology aspects

deemed most important for its purpose and deliberately omits a number of issues in

the requirements and computer technology areas that were judged to be of lesser

importance.

Accordingly, the UCT attention focused (Section 3) on the assessment of the trends

in the computer hardware and software, distinguishing in the latter the infra-

structure software from the engineering analysis and optimization methods. The

assessment determined that further progress in the single processor speed will

probably continue until it will eventually be slowed down and even arrested by the

fundamental limitations of the silicon technology. Parallel to that, the trend toward
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massively parallel processing will gather momentum to the extent that predictions

of machines with a million processors begin to appear in literature, while machines

with about 10,000 processors already operate at Sandia and Livermore Labs. The

million processors machines will be placed at the high end of the spectrum of

computers that spans a large variety of computer architectures, and technologies in

both hardware and software, beginning with a palm top at the lower end.

From the assessments of the computational requirements and the computer tech-

nology trends, UCT inferred (Section 4) that the ultimate goal of making the

computing underlying the design process so capable that it no longer acts as a brake

on the flow of the creative human thought is possible by an exploitation of both the

advances in a single processor performance and the multiprocessor parallelism.

However, that exploitation will require matching the variety of computing jobs to

the spectrum of computer architectures. That matching will require development of

new, innovative engineering analysis and optimization methods for effective

utilization of massively parallel processing. In some instances these new methods

may have to be so new and different that they will constitute new computing

paradigms.

UCT concluded (Section 5) that Government seed money and leadership is neces-

sary for development of the above new methods because that segment of the market

is too small and risky to attract commercial vendors. Consequently, UCT recom-
mends:

the initiation (Section 5) of a new activity at LaRC, provisionally called

Computational Engineering (CE). The CE should have two components:

(1) the interdisciplinary activity to identify needs and opportunities

resulting from the new computer architectures and the engineering

design processes, to coordinate the disciplinary developments, and to

carry out validation and benefit demonstrations by applications in

aeronautics and space; and (2) a disciplinary component consisting of

activities in all the disciplines to gear the disciplinary tools and methods

to new computer architectures.

The recommended implementation of CE may occur through the present CAS

Team with a broadened charter and funding drawn from the continuing HPCC

Program and the new ISE Program. In fact, the CE development has a potential of

becoming the principal support LaRC will be providing to the ISE Program.

Considering the long lead time and magnitude of the resources needed for bringing

the new methods for CE from inception to practical use, the time to start the

recommended CE activity is now.



2. 0 User Requirements

When software developers plan for a future product, e.g., a word processor, they

usually begin with writing a number of scenarios to scope out what users might

want to do with the product. It is now well established that such User Scenarios are a

more effective way for deriving the requirements and specifications for the product

than trying to write a list of the product functions and requirements in abstract. We

have adopted that approach to scope requirements for ultrafast computing and con-

sidered two scenarios that appear verbatim in the Appendix and are summarized in
this section.

The first scenario is for a hypothetical supersonic transport design to be performed

in 2011. It was developed jointly by the LaRC and LeRC HPCCP/CAS teams in the

summer of 1997 for the purposes of the Information Power Grid planning (an ARC

initiative). The second scenario was developed at LaRC in November 1998 by a Fast,

Efficient Design Tools Team whose task was to plan for tools development for

design of a Reusable Launch Vehicle in 2020.

2.1 User scenarios - a summary of the user scenarios in the appendix

This section presents summaries of the two user scenarios described in appendices
A.1 and A.2.

Assumption: Tens of thousands processors are available and engineering analysis

codes are capable of exploiting that parallelism.

Scenario 1: Multi-company design of a supersonic transport aircraft

A supersonic transport aircraft is at an early preliminary design stage. The multi-

company partnership has one week to chose between two proposed alternative

configurations. The choice will hinge on small differences of large numbers in

multidisciplinary trades, e.g., drag vs. weight, hence a high fidelity of analyses is

important. There will be a preponderance of previously generated data available

through an efficient data retrieval system. There is a separate engineering group

(geographically dispersed across the US) for each of the following: aerodynamics,

structures, propulsion, life-cycle economics, and aircraft performance; and each

group belongs to a different company. The performance objective to be maximized

is the range for a given payload under all the disciplinary constraints.

Scenario 2: Multi-company design of a reusable launch vehicle

A reusable launch vehicle is at an early preliminary design stage. The multi-

company, geographically dispersed partnership has one week to chose between two
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proposed alternative configurations. The mission profitability, and the corres-
ponding return on investment (ROI), will hinge on small differences of large
numbers in multidisciplinary trades, e.g., structural weight vs. structure cost. This
trade-off must account for the structural weight effect on the propulsion required
and its influence on the vehicle gross weight and total cost, hence a high fidelity of
analyses is important. The performance objective to be maximized is the return on
investment over the life of the vehicle, including the assumptions of 10 years and
36 launches per year. The return on investment must account for the life-cycle
economics.

The task is made more complicated by the discovery in the aeroelastic analysis that
in one of the configurations, the structural displacements of the vehicle nose is
excessive in a way it displaces the shock wave impinging on the engine inlet. An
attempt to fix the problem by structural optimization led to excessivestructural
weight penalty, therefore, an alternative of relocating the engine to make it less
sensitive to the nose-generated shock wave is under consideration. However, to
assessfully the benefit of that alternative, one has to return to the conceptual stage
in order to modify the configuration.

Time Constraints and Computing Requirements derived from the above scenarios

Time Constraints

• Complete the round of concurrent disciplinary operation in less than 60
minutes.

• Complete the collaborative system-level optimization and assessment of the

results before committing to the next round of disciplinary optimizations in less
than 90 minutes.

• Sustain a pace of 4 to 5 cycles in a working day, each cycle entailing first two items
above.

• Obtain answer to a minor "what if" question in less than 10 seconds

• Obtain an answer to a major "what if" question in less than 2 minutes.

1. Flexibility to "shift gears" (computing agility) between codes of different fidelity

to trade computing cost for accuracy, to return from the detailed stage to the

conceptual one as the need requires, and to change from one MDO method to
another

Computing Requirements

• CFD, Navier-Stokes-level, including rarefied atmosphere reactive flow, entire

configuration analysis with derivatives of output to input turn-around, less
than 1 minute

• Structural analysis, FEM-level, entire airframe of about 100K EDOF, 1000 loading

cases, with derivatives of output to input turn-around, including heat transfer

and hot-structures, less than 10 sec.
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• Propulsion, including solid booster, electromagnetic propulsion, and air-
breathing propulsion, 1 minute to match surrounding simulation optimization
time.

• Simulation of dynamic phenomena, e.g., the vehicle handling, close to the real
time scale.

• Modeling of the life-cycle elements other than the vehicle physics, taking into
account the predominantly discrete and statistical nature of these elements in
elapsed times comparable to those achieved for the vehicle physics modeling.
This includes the analysis of cost and revenue necessaryfor assessmentof the
ROI.

• Other disciplines turn-around - nearly instantaneous.
• Modeling of the management of the design process in elapsed times comparable

to those achieved for the vehicle physics modeling.
• Use of intelligent agents for continual monitoring of the process, information

gathering, warnings about unexpected conditions arising in the process,and
making routine decisions.

• Simulation of dynamic phenomena, including real-time refreshing of at least a
part of the data.

• Visualization and Virtual Reality capability to support real time movies to
display dynamic phenomena: at least 24 frames/sec on high-resolution screens.

• Immersive capability enabling a virtual walk throughout the mission archi-
tecture and its execution in time; peeling off the external parts of the vehicle to
look inside, and invoking analysis by touching the part of the vehicle and
pointing to the computing tool to be applied to that part.

2.2 Computing requirements for two key disciplines: Computational Fluid

Dynamics and Computational Structural Mechanics

The complete scenarios for the supersonic transport and RLV involve all the aero-

space disciplines. Estimating the requirement for all of them would exceed the

report scope. Therefore, the estimates were limited to CFD and CSM singled out as

the known greatest consumers of the computing resources in aerospace vehicle

design. These estimates probably cover about 50 % of the total and are sufficient to

establish the orders of magnitude involved.

The goal of rapidly computing a Navier-Stokes solution on a complete aircraft

configuration, including sensitivity derivatives, will require substantial computing

resources. What constitutes a "complete" configuration is subject to interpretation,

but at a minimum should include wing, tails, fuselage, nacelles, and control

surfaces. The minimum number of grid points required for a solution on such a

configuration would be on the order of 107; on the order of 108 grid points would be

required for a well-resolved flow field, and thus is the basis for the requirements

presented below.
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Structured-grid flow solvers (http:J [science.nas.nasa.gov[NfaulknerLcfd perf.html)

require significantly less memory and floating point operations than unstructured-

grid solvers. However, the ability to easily generate unstructured grids around

complex configurations means that unstructured solvers [Mavriplis 1998] are the

tools of choice for the rapid design envisioned in the scenario.

Correspondingly, the structural analysis of an airframe, for a supersonic transport or

a reusable launch vehicle, is expected to require a finite element model of the order

of 100,000 elements, 300,000 nodes, 900,000 EDOF, (average 3 EDOF per node), and

1,000 loading cases. For dynamic analysis purposes the number of vibration modes

needed for flutter analysis is of the order of 50 repeated to account for the symmetric

and antisymmetric boundary conditions.

2.2.1 CFD requirements

CPU requirements

A widely-used structured-grid Navier-Stokes solver was recently documented as

requiring approximately 8600 floating point operations/grid point/multigrid cycle.

Recently published data for an unstructured solver using the same basic algorithm

indicates approximately 49,000 floating point operations / grid point / multigrid cycle

are required for the equivalent computation on an unstructured grid. Assuming

that 500 multigrid cycles are required for a converged solution, then roughly 1015

operations are required for the function evaluation on an unstructured grid of 108

points

For derivative evaluation, assume that an adjoint formulation is used, so that any

number of derivatives can be obtained with a solution to the adjoint equations.

Although in principle the adjoint equations can be solved in approximately the

same operation count as the flow equations, experience suggests that depending on

the formulation used (continuous or discrete) up to 5 times more operations may be

required as compared to the function evaluation. If automatic adjoint tools are used,

the factor can be as much as 20. Assuming a factor of 10 as an average, evaluation of

derivatives for the complete aircraft will require on the order of 1016operations for

an unstructured grid with 108 points.

Therefore, to obtain the required function and gradient evaluations in approx-

imately 1 minute will require a machine capable of a sustained rate (effective speed)

of approximately 1015 floating point operations per second. It is worth noting that in

order to meet the computing requirements in the scenario, such computing speeds

must be routine, not one-of-a kind computations.

The scenario for RLV requires analysis of a reactive flow in rarified atmosphere that

is likely to amplify the above estimates by a factor of 4, assuming an 11-species air
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model, and non-equilibrium gas computation. Moreover, unsteady aerodynamic
analysis required for flutter and control is likely to add another multiplier of the
order of at least 10, more if animation of time-dependent phenomena is needed.
Thus, the estimates developed above should be regarded aslower bound.

Memory and storage requirements

Current unstructured solvers require between 250 and 500 words per grid point

(compared to 25-50 for structured solvers). The higher bound implies 5x101° words

for a grid of 108 points, or roughly 400 GBytes of memory for double precision

arithmetic. The storage requirement for an unstructured grid of this size would be

roughly 50 GBytes; storage of the solution would require 6 or 7 times this amount,

depending on the turbulence model. These estimates increase by about a factor of 10

for reactive flow in rarified atmosphere.

2.2.2 CSM requirements

The Finite Element Analysis (FEA) of a 900,000 EDOF structure leads to linear

equations whose matrix of coefficients is 900,000 x 900,000 but is very sparse. The

scarcity order is of 1%. The individual loading cases appear as separate right hand

side vectors, an ideal opportunity for coarse-grained parallel processing.

The volume of output can be estimated by assuming

• up to 6 displacement values per node
• 3 stress values at four corners and the center of a membrane element.

• 10 strength and buckling constraints per element

• 20 composite plies in a membrane element.

Under the above assumptions the number of displacements to be output for 1,000

loading cases is 900,000 x 1,000 = .9 * 109. The number of stress values is 100,000 x 3 x 5

x 20 X 1,000 = 30 * 109. The number of strength constraints is NSC = 100,000 x 10 x

1,000 = 1 * 109.

The number of arithmetical operations for factoring (NAOF) of a banded matrix of

the load-deflection equations is (EDOF)/2 * (Bandwidth) 2. The estimate of the

Bandwidth (only the symmetric half ) is 4,500, hence NAOF = 9 * 1012. The

preprocessing of the load-deflection equations at least quadruples the above.

Forward and back substitution requires NAO of about 1% of NAOF per loading case

and another NAO for stress postprocessing about equal to that for preprocessing but

multiplied by the number of loading cases. Hence, the estimate for the total number

of arithmetical operations for the subject structure is TNAO = NAOF*((4 +

((1/100)+4) * 1,000) = 36 * 1015.

Sensitivity analysis for NDV design variables requires repetition of the above the

number of times which varies from (NDV+I) for finite differencing or automatic
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differentiation, to about 1/3 (NDV) for the direct analytical method. If the adjoint

sensitivity method is used the forward and back substitutions have to be repeated

the number of times equal to the order of the number of critical loading cases,

NCLC, and the stress postprocessing needs to be repeated the number of times equal

to the number of the critical constrains, NCC.

Consequently the TNAOAS, the total NAO for analysis with sensitivity, may be

given for finite differencing or automatic differentiation

TNAOAS1 = TNAO * (NDV + 1)

for the direct analytical method

TNAOAS2 = TNAO + TNAO * NDV/3

and for the adjoint sensitivity analysis method

TNAOAS3 = TNAO + NAOF * (1/100)*NCLC + NAOF * 4 * NCC

Assuming NDV 5000, NCLC = 10, and NCC =100, the estimates are TNAOAS1 = 180
* 1018; TNAOAS2 = 60 * 1018, and TNAOAS3 = 4 * 1016. TO execute the above in 1

minute would require a machine capable of a sustained performance of the order of
1015 to 1018 FLOPS.

It is notable how strongly the above estimates depend on the choice of method and

that the lowest estimate of 1015 FLOPS agrees with that derived for CFD in the

preceding section.

Memory and storage requirements

The storage requirement is dominated by the stiffness matrix and the matrix of the

constraint gradients, the Jacobian, needed in gradient-guided optimization. The

stiffness matrix, symmetric with 1% scarcity, requires the number of words in

storage equal to 0.01 * (EDOFa-EDOF)/2 + EDOF = 4 * 10 9.

Current equation solvers require between 350 and 700 bytes of memory for each

degree of freedom (equation). The higher the number and complexity of structural

elements connecting the degrees of freedom, the more memory is requiredfor

solution per equation. The 53 second solution of a 551,585 equation aircraft model

requires 2 Gigabytes of memory (14 GB of real memory is available on our Origin

2000). Unlike CFD codes, memory to solve large-scale structural analyses

may be either real or "virtual" using current "out-of-core" (using disk for memory)

solution techniques.

Although most structures codes have solvers with "out-of-core" capability, such

operations involve a serious performance "hit" often slowing down solutions by an
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order of magnitude compared to use of "real" memory. Thus, memory is not, per
se, a limiting factor to solve large structural problems. However, more memory
speeds up the solution. With memory capacities increasing according to Moore's
law, structures solutions will benefit by less reliance on "out-of-core" solutions and
significantly faster solution times. With typical departmental computers with 14GB
of real memory now are capable of solving 4 million equations in memory ans
virtually unlimited sizes using virtual memory. In 10 years, following Moore's law
projections for memory growth, typical departmental computers will have 300MB
memories and be capable of solving 85 million equations directly in memory and
virtually unlimited sizes "out-of-core".

Optimization memory and storage requirements are driven by the dimensions of
the Jacobian matrix that contains the derivatives of constraints with respect to
design variables. To estimate the dimensions of that matrix assume the number of
design variables needed to describe the aerodynamic shape, and the cross-sectional
dimensions to be of the order of 100 and 5,000,respectively (from the sources
reviewed in [Sobieszczanski-Sobieskiand Haftka 1997]).The Jacobian dimensions
are (number of design variables) * ( number of constraints). For the data introduced
in the foregoing, this yields 109 X 5,000. This is, generally, a full matrix so its content

that needs storage is of the order of 5 * 1012.

2.2.3 Coupling of CFD and CSM

CFD and CSM exchange the data on aerodynamic loads and structural deformation.

Assuming 10 flight conditions, the full extent of the data to be so exchanged is of the

order of 10 x (number of FEM nodes = 300,000) = 3 * 106. Condensation techniques

may be used to reduce the volume of data by 100 to 1,000, but they are problem

dependent and introduce uncertainty. The data exchange occurs at least once for the

combined CFD and CSM analysis. The analysis is iterated, typically, 5 to 7 times for
nonlinear CFD.

2.3 Optimization and other requirements

Optimization requires repetition of analysis. The use of modern approximation

methods and decomposition procedures has decoupled the number of the

repetitions from the number of variables. The current practice, surveyed in

[Sobieszczanski-Sobieski and Haftka 1997], indicates that the number is of the order

of 50, however each analysis must include sensitivity analysis (or an equivalent

effort for generation of a response surface or training a neural net). The CPU time

added for the sensitivity analysis can be estimated for NDV design variables by
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multiplying the analysis time by the factor of N, where N varies from 0.3 NDV, for

an analytical method, to 2 NDV, for finite differencing or automatic differentiation.

Thus, for NDV = 5,000, the analysis cost embedded in the optimization of a

combined CFD & CSM problem is of the order of the single combined analysis cost

multiplied by 50 x 5,000 x (0.3 to 2) = (7.5 to 50) * 104. However, a dominant portion of

the gradient computation for each design variable is independent of the other

design variables, hence an opportunity to employ a very large number of

concurrently operating processors.

The repetitive analysis requirement is not limited to optimization. It is also the key

requirement in visualization of dynamic phenomena to support 24 frames/second

animation, and in the step-by-step simulation of such phenomena in real time.

Computations that support these types of applications usually mix reanalysis with

retrieval of previously generated data and employ sophisticated data compression

schemes, therefore, reliable estimates for additional computing requirement are

problem-dependent and difficult to formulate. However, it is reasonable to expect

that they are substantial, both in terms of computing speed and time for data

retrieval. This opinion is substantiated in Section 4.5 on Human Interface and in

Appendix Section A3 on Real Time Simulation and Visualization.

2.4 How fast is fast enough?

Acknowledging that one of the principal drivers of the computer technology

progress is the demand for ever faster computing, it is useful to ponder the question

"how fast is fast enough?". To examine that question, consider the following major

operations that can be discerned in either of the above scenarios:

1) Human decisions regarding the relatively few but very important aspects of

design where choices cannot be made by automated computing.

2) Analysis combined with optimization regarding the large number of detail-level

design decisions that can be automated within the limits set by engineers.

Warnings must sound whenever the solutions press against these limits. Short

elapsed time is the critical requirement in this operation.

3) The above operations are interleaved.

4) Occasionally, surprise new information is discovered at a late design stage that

compels one to return to earlier stages. In the extreme, one may have to return to

the conceptual stage or even to the requirement formulation. The return should
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be encouraged by making it easy, because the design leverage at early stages is

usually much greater than at the later stages.

Item 4 above suggests computing agility, a term for an ability to move expediently

between the level of details in the design process, as a requirement almost as

important as the computing speed.

The computing speed itself is interpreted here as a variable that shortens the elapsed

time-to-solution (ETTS). It is important to note that the computing speed is merely a

measure of capability that the user may utilize either as a means to reduce ETTS, or

to trade ETTS for accuracy, or to explore more design options in the calendar time

allotted for the particular design task.

If the user opts entirely for a shorter ETTS, the progress is measured in discrete

chunks. If a particular task typically requires an overnight 16 hour run, a reduction

to 8 hours will hardly be perceived as a meaningful improvement because the

results will still be coming back the next day. In contrast, a reduction to 2 hours

would be a meaningful improvement as it would enable one to evaluate the results

and to make decisions about three times a day.

By the same token, the ultimate goal should be to reduce ETTS for even a major

problem to the order of a second, the time interval that would support the

continuity of the train of thought in a creative pursuit of a better design. When that

goal is achieved, the human mind will pace the design process, not the computer.

Note that this is precisely the capability of the present day word processing. The

length of time needed to write this report depends on this writer's ability to

compose sentences, the S/W & H/W of the word processor has a comfortable speed

margin beyond that ability. That should be the goal to be ultimately reached in

support of engineering design. This ambitious goal can only be attained by the

synergy of new methods and new computer architectures. To put it succinctly:

"Compute as fast as engineers can think!"

To translate the above goal into a speed-up of the current computing capability,

consider the requirement of 1015 FLOPS for the effective processing speed

formulated for the CFD and CSM analysis problems, including sensitivity, in section

2.3.1 under an assumption of ETTS = 1 minute. Considering 50 analyses (with

sensitivity) to converge the aircraft configuration optimization, and asking for ETTS

= 1 second for that task would require 50 * 60 = 3,000 greater speed, that is 3 * 10 TM. It

is important to emphasize at this point that the above FLOPS estimates refer to the

effective computing speed rather than to the peak speed.
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3.0 Trends in Computing

With the requirements outlined in the previous section in mind, the UCT

examined the projected technology trends, which are summarized in this section.

3.1 Current state of the field and predictions based on Moore's law

The most widely used measure of computer performance projections are based

upon Moore's Law (founder of Intel) which projects a factor of four increase in

computer chip performance every three years. Similarly, an increase in memory

density has been experienced. The Semiconductor Industry Roadmap [Anon. 1997]

is based upon this continuing for about the next ten years. Beyond about 2007, the

present technology will not support this growth (the X-ray lithography on which the

chip manufacturing technology is based will reach its fundamental resolution

limit), but individuals in the chip business have confidence that progress will be

maintained, based upon "... it always has, it will continue." One may note that the

NASA ARC initiative called Information Power Grid (IPG) is based, in part, on the

expectation that a "brick wall" preventing further increases of single-processor

speed, [Feiereisen 1998], will be encountered by about 2010.

Based upon this rate of doubling every eighteen months, the growth assured by 2007

will be a factor of 64 in performance and memory density. The speculative growth

by about 2013 could be a factor of 256 beyond 1998 performance. A major break-

through could change this picture. Speculations abound on such breakthroughs, e.g.,

quantum computing, chemical computing, etc., however, the time to the

application readiness for any of these inventions cannot be predicted with any

degree of certainty. Therefore, these speculations are left out of the scope of this

report.

The two scenarios (Appendices A.1 and A.2) interpreted in Section 2.0 represent real

requirements that are not being met now. They substantiated the estimate of the

effective computing speed of the order of 1018 FLOPS as given at the conclusion of
Section 2.4.

The currently available processor speed approaches the order of 10 9, hence the above

estimate suggests that further speed-up by 10 9 is needed. Assuming that the Moore's

law, doubling the processor speed every 18 month, continues unabated, it would

take 45 years to achieve the required speedup. If a machine is built using 10 6 of the

fastest, currently available processors and operated using a solution algorithm with

zero overhead for interprocessor communication, it would deliver the effective

speed of 1015 FLOPS, the peta-FLOPS level but still three orders of magnitude short

of the projected requirement of 1018. To make up for that shortfall, the individual

processor speed needs to increase by the factor of 1,000, the speed-up likely to be

provided by the Moore's law in about 15 years.
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Of course, the data and calculations on which the above estimates rest are subject to
a wide margin of uncertainty. Acknowledging that, the above order of magnitude
evaluation indicates that the computing with the effective speed that will make
even a very large problem solution perceived as instantaneous is attainable in one
to two decadespartially by the progress in a single processor technology and partially
by massively parallel processing. The caveat is that this will require development of
methods that can effectively utilize a very large number of concurrently operating

processors with almost no overhead for interprocessor communication. A new

generation of methods will be required to do that so that the machines with very

large number of processors are utilized at their full potentiat

3.2 Trends in computer architecture

In the not too distant past there was only one basic computer architecture, the

classical model of a single CPU. In contrast to that today and for the foreseeable

future the users will have a choice of an entire spectrum of various computer

architectures, ranging from a single processor palmtop to supercomputers that

employ massively parallel architectures. These architectures vary in many respects,

e.g., different memory hierarchical arrangements, and many innovative ways of

connecting processors with their dedicated memory blocks. The spectrum will be

augmented with intelligent networks capable of making an assemblage of dissimilar

machines appear as a single virtual computer to the user.

For several years now, the computer and component business has been operating in

a commodity market mode. The mass market is driven by requirements that have

broadened in scope and departed from the prior needs of users. Commercial and

home use have diversified tasks, changing the requirements and driving

components in new directions. Examples of this are more use of audio and video,

more communications and storage. The mass market drives the availability and

specifications for components. Economics trumps technology.

In earlier years, scientific computing was the driving force and had sufficient market

clout to get its needs to control the availability of suitable components. Now, the

scientific market is a very small percentage of the total. Thus, technical computers

will have to be designed using commodity parts. Up to recently, this has produced

suitable components. It is not certain if the mass market components will meet the

demands of the scientific community in the next ten to twenty years. Thus,

compromises may be forced on supercomputers.

The effect of these economic realities is evidenced by the fact that most

hardware vendors have abandoned large distributed memory architectures and are

manufacturing small shared memory machines (SMPs) with only 10s of processors

since these can easily be sold in the mass market. Larger parallel machines for the

scientific market are then constructed as clusters of SMPs using fast

networks/switches as the interconnection medium. This trend is corroborated by
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the sequence of teraflop machines (Figure 1) being installed for the Department of

Energy's ASCI program (http:LLwww.llnl.govLasciL). Each of these machines

consisting of thousands of processors, has been constructed by combining small SMP

units to provide the required computing power. The issue with this approach is

that such machines are significantly more complex and are thus more difficult to

use effectively.

Figure 1 ASCI Multi-Teraflops Computing Roadmap

The impact of using COTS hardware also extends to software. The scientific

community will need to increase its spending on development of applications and

tools. As an example, in a multi-disciplinary study, one application will run sep-

arately much faster than another. All portions of the simulation should run

approximately in synchronism. This will entail adjusting the number of processors

between disciplines proportionately to the processing required. This means either

doing this manually by experience or incorporating some adaptive system that will

make the assignment, a complex task dependent on the logic decisions within the

programs. Decisions will also be needed on the interactions at the interfaces of the

different applications. Programming will become more complex in the multi-

disciplinary environment and validation of software will then become extremely
critical.

3.3 Trends in software

In the past few years, software technology has not kept pace with the advances in

hardware architectures and systems. More success has been seen at the uniprocessor

level than in the multi-processor arena. The technology developed for vectorizing

compilers has proved to be fundamental for compilers targeting RISC architectures.

However, cache management, which is critical for performance, is still a tricky issue.
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On the other hand, research in automatic parallelization for parallel architectures
has found only limited successin that, current compilers can produce good code for
only moderate sized shared memory systems.For larger systems, and in particular
for systems which exhibit memory locality, users have to resort to explicit
parallelization to extract the full performance of the underlying architecture. The
emergenceof MPI (MessagePassing Interface) for distributed memory systems has
proved a boon for users in providing a stable and portable interface for a variety of
multiprocessor architectures. A similar effort called OpenMP, is currently underway
for shared memory systems. Other approaches, such as High Performance Fortran
(HPF) which allow users to express the parallelism at a higher level, have only
found limited successin niche areas. Driven by the realities of the commercial
world, future multiprocessor architectures will tend to be small shared memory
units clustered together to form larger parallel systems. Providing a programming
interface for such systems is a difficult challenge, since it is not clear whether even
users writing explicitly parallel code can effectively exploit the multiple levels of
parallelism exhibited by these architectures.

Over the past few years, a large number of tools have been developed for debugging
both logical and performance bugs in parallel programs. Users have adopted only a
few of these tools, finding most of them to be too clumsy to use and not providing
the needed information. In particular, it is not clear how such tools will scale with
the increase of the number of processors envisioned in future multiprocessor
systems along with the increase in the overall complexity in the architecture of such
machines.

3.4 Trends in storage

Storage capacities are greatly increasing, but at a slower rate than computational

power, primarily due to economic, non-technical constraints. The high performance

computing community has now identified the widening gap in the ability to

computer and create information, and the ability to store and access the information

[Moore et al. 1998]. The magnetic disk as a mass storage device depends on packing

density of the magnetic bits (dipole zones) for both the speed of access and volume

of data. The current cutting edge of technology approaches 12 gigabits/sq, inch

[Tristam 1998]. It is projected that when the density rises into the 20 to 40 gigabit

range the magnetic zones will become too small to maintain their polarity that

distinguishes between 0 and 1 and that polarity will become a random function of

temperature corrupting the data.

To address physical storage needs for data intensive computing, there are 2 main

classes of relevant projects: fully integrated and separately designed systems such as

the High Performance Storage System (HPSS), and the commodity based extensions

of existing storage systems. However, neither of these approaches attempt to address

the requirement for higher level data management capabilities as called for in
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[Moore et al. 1998].HPSS[Coyne et al. 1993] is a joint project between DOE, NASA,
IBM and other parties with an interest in high performance computing. HPSSis a
hierarchical, distributed system that allows arbitrary storage components to be
"plugged-in" to HPSSand managed through a separate suite of software. HPSS
supports terabyte file sizesand systemswith petabyte capacities. HPSSis also
network centric (no hosting computer bottleneck), performs parallel file transport,
etc. HPSSis one level above traditional file systems,but below traditional database
technologies in terms of responsibilities. HPSSis independent of advances in
storage mediums. More information on the HPSS project is available at the
following Web site: http: / / www.sdsc.edu / hpss/.

In the commodity market, over the last 5 years prices for disk drives have fallen a

factor of 2 per year, with area densities increasing 60% per year, and data rates

increasing at 40% per year per year [Gibson et al. 1996, Grochowski and Hoyt 1996].

Although these trends exist in storage components, there is less industry confidence

in the ability to sustain their advancement pace relative to microprocessors and

Moore's Law. However, we believe that it is likely that these rates will continue,

even if the underlying implementations shift. The first attempt to use commodity

components was the Redundant Array of Inexpensive Disks (RAID) [Patterson et al.

1987] as a method of clustering commodity disk drives together for reliable, larger

scale storage. Future trends in commodity usage will include moving away from

RAIDs as they currently exist (the host computer is the throughput bottleneck),

toward a fully distributed system similar to what is called "tertiary disks" [Talagala et

al. 1998]: a 3TB system where many 8GB disks (370) are managed by 20 PCs, allowing

greater capability for parallel access and reliability (See "Serverless Filesystems"

[Anderson et al. 1998]). Cheaper disks made RAID possible, cheaper computers will

make tertiary disks possible.

A reasonable and representative forecast for the Hardware Technology Trends

related to future computers is contained in http://cs.berkeley.edu/Npatterson/talks

entitled: "Hardware Technology Trends and Database Opportunities" In summary,

it projects:

• Disk Storage: Continued advance in capacity (60%/year) and bandwidth

(40% / year)

• Networks: Limited by software protocols (Internal I/O bus is limiting factor)

• Memory: Capacity follows Moore's law 4x/3 years (60%/yr)

Processor: Outpaces DRAM Performance by 50%/yr: 10('88), 100('94), 1000('99)

SPEC performance doubling/18 months, embedded processor promise (Moore's

law)
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Systems:"Greg's Law" database demand of 2x/9-12 months outstrips Moore's
law and drives processor design forcing designers to stretch beyond Moore's Law
for systems.

In conclusion, any advances we have seen in hardware, networking and systems in
the past 10years is likely to be surpassed in the next ten years.

3.5 Trends in networking

Networking technology progress arguably fares worse than processors or storage.

Trends in networking can be analyzed in partially overlapping terms of Local Area

Networks (LANs), Wide Area Networks (WANs), and the software and protocols

that allow applications to send and receive data from the networks.

In terms of LAN capability, additional technology is currently available, but is not as

widely adopted as would be expected [Stevens et al. 1997]. Most sites are in the

10Megabits/sec standard Ethernet, or the 100 Megabits/sec Switched Ethernet or

FDDI range. Although 0.8 Gigabits/sec High Performance Parallel Interface (HIPPI-8)

is available now, it is not widely deployed. 6.4 Gigabits/sec HIPPI-64 should be
available in the near term.

For WAN capability, there are a number of initiatives now underway including

Internet 2 (http://www.internet2.edu/) as well as the Next Generation Internet

(http://www.ngi.gov/). Current testbeds are just now beginning to support I GB / s

connections for WANs; it is unknown how multi GB/s WANs will be constructed

to support future requirements Commercial attention to rapid broadband networks

is dramatic as evidenced by recent ATT/TCI/@home and MCI/Worldcom mergers

(takeovers). In his recent annual report to shareholders, the chairman of ATT stated

ATT's plan to provide 3Mb/s service to 80% of households in the next 3 years. He

also stated the future of ATT hinges on a rapid transition from long lines to

broadband incorporating phone calls in the future within the internet broadband.

Network competition is fierce, with broadband coming fast and cheap to the average

consumer and a large proportion of ATT and other phone calls going over

broadband (internet) rather than long lines in the next few years. This is echoed by

Bill Gates in his recent addresses at Indiana University and the Manhattan Institute.

Bill Gates is personally heavily invested in a worldwide high-speed network firm

with numerous earth orbiting satellites (not Geosynchronous). It is not

unreasonable to project that network speeds will be one of the fastest growing areas,

surpassing even the Moore's law rate for CPU and memory over the next 10 years.

Perhaps the largest barrier to utilizing both LAN and WAN technology is the

current application-network interface. The operating system kernel and the

networking stack are commonly identified as the largest single slowdown in

networking. The popular networking protocols were designed in a low bandwidth,

low latency context and such implementations are non-optimal in the current

networking environment. For example, the Virtual Interface Architecture (VIA)
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[von Eicken and Vogels 1998] is an emerging standard that features low latency and
high bandwidth for small messagesby allowing applications to send and receive
network messagesby bypassing the operating system and writing to a user-level
network interface.

3.6 Trends in distributed computing

Recent advances in the Internet and in particular Web-based technologies have had

a dramatic impact in the information technology arena. Initiated by work done by

academics, most of these advances have been driven by the commercial world

serving the needs of businesses. In particular, commercial forces are joining together

to propose standard protocols and interface such as IIOP and CORBA, to allow

disparate hardware and software resources to inter-operate with each other within

this new paradigm. The introduction of Java has provided an important boost in

this search for portability of programs. Another significant area of development is

collaborative technologies which allow multiple users to simultaneously access and

manipulate shared dynamic information.

These advances have not only changed the way that ordinary citizens access infor-

mation and services but have also influenced the computing environment of

scientists and engineers. Faster networks and widespread connectivity have allowed

scientists to envision environments in which various data and computing

resources can be brought together to synergistically solve a single large problem.

This vision is central to several projects currently underway, including NASA's ISE

program (http: / / cst-thor.larc.nasa.gov:80 / ise / navigate.htm) and the proposed IPG

(http://science.nas.nasa.gov/GroupsLTools/IPG/) activity, and the NSF supported

efforts at the San Diego Supercomputing Center (ht_://www.sdsc.edu/) and NCSA

(http:LLwww.ncsa.uiuc.eduL) at the University of Illinois. Jini, a Sun R&D project,

expands the power of Java by enabling spontaneous networking of a wide variety of

hardware and software resources. These projects are focusing on the services and

technologies required to integrate geographically distributed resources into a

seamless computing fabric for solving large multidisciplinary problems.
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4.0 Impact of Trends on Computing in Engineering Design and Research Directions

This section examines the impact of the computer technology trends on various

aspects of computing in engineering design and stimulation of that impact on

research directions. The aspects are: the classes of the computing problems; types of

parallelism, algorithm research, distributed computing, and human interface with

emphasis on visualization.

4.1 Classes of computing problems

The user scenarios call for solution of a multitude of engineering computing

problems. It is axiomatic that these problems vary broadly in terms of the metrics

such as the number of variables, number of arithmetic operations to achieve a

solution, the volumes of input, intermediate, and output data, couplings among the

variables, degree of interactive operation, degree of repetitiveness, human interface

requirements, and the importance of the time-to-solution in the user perception.

The computer technology trend toward a broad spectrum of architectures poses a

new problem that was nonexistent when the single processor machine was the only

choice. The user's convenience, perceived efficiency, and real cost of solving a

particular problem will depend, sometimes strongly, on the match between the

problem metrics and the architecture of the machine.

Consequently, the following classification should underlie an effective planning for

development of new methods in engineering computing:

Clearly, a class of the computing problems may be identified that are solvable

below the "real time" threshold on single processors of the existing or projected

technology.

• Another class so solvable using coarse-grained parallelism of the "single code-

different inputs" type.

• Another class so solvable using domain partitioning parallelism.

Finally, it is likely that for a certain class of problems none of the above is

adequate and new paradigms in conjunction with Massively Parallel Processing
are needed.

The number of problems in each class and their relative importance is not known.

Collection of at least approximate data for the above will be important for

determining how the NASA-funded development and priorities should be

distributed over the above classes of problems.
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4.2 Types of parallelism

To exploit a machine with a large number of processors in engineering computing,

one may choose among the following options:

l) Coarse-grained parallelization a code replicated and executed with different

inputs

2) Coarse-grained parallelization by partitioning of the analysis domain

3) Fine-grained parallelization of an existing code

4) Fine-grained parallelization by recoding the solution algorithm from ground up

5) New paradigms to replace existing solution algorithms with new algorithms that

are intrinsically parallel

Option #1 is the most straightforward to implement and is available immediately. It

applies whenever a code is to be executed over and over again with different inputs.

By replicating the code over as many processors as there are inputs, the elapsed time

may be compressed to nearly the time of a single execution.

Opportunities for using that option are numerous. For example, a complete

evaluation of the aerodynamic characteristics of an aircraft requires executing the

same CFD code at various combinations of the Mach number and angles of attack. In

airframe structural analysis, a large number of loading cases enters the FEA. The

analysis involves a core part to be executed once for all loading cases, and

postprocessing independent for each loading case. Thus the relative efficiency

derived from a coarse-grained implementation of the postprocessing increases with

the number of loading cases. A similar opportunity arises in the sensitivity analysis.

The advantage of Option #1, the coarse-grained parallelism, lies in the near absence

of new coding and linear scalability in terms of the number of processors. However,

the number of processors that can be concurrently engaged depends on the problem,

and it is likely that in application to analysis it will not rise to 0(4). The outlook is

more optimistic for optimization where the methods of the genetic algorithm,

response surfaces, and neural nets all call for very large numbers of independently

analyzed points in the design space. Along the same line, the human interface to

computing will benefit from animation or virtual reality supported by

simultaneous generation of frames depicting a time-dependent phenomenon for a

series of time steps.

Thus, one may expect that the option of coarse-grained parallelism will be used to

advantage first and will buy time needed to explore the other options.

Option #2, coarse-grained parallelization by partitioning of the analysis domain,

applies wherever a physical object is analyzed by discretization, e.g., the flow in 3D

space around an aircraft analyzed by CFD on a 3D grid, or an airframe modeled as an

assemblage of finite elements. In either example, the aerodynamic grid or the finite

element mesh are partitioned into subdomains, each assigned to a separate
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processor. That partitioning createsan opportunity to engage many processors
concurrently and compressesthe elapsed time. Unfortunately, the partitioning
generates the need to reconcile the unknowns at the subdomain interfaces by
forming and solving new equations that would not have existed had the problem
remained in the original, nonpartitioned form. For fundamental geometrical
reasons, the number of these interfaces quickly rises with the number of
subdomains. This rise depressesthe effective computing speed gained by
partitioning, and eventually, the computing on the interfaces outweighs the gain
from the concurrent subdomain processing. To see that drawback, think of a finite
element model partitioned into substructures. When the number of substructures
increases to the extreme that each finite element is treated as a substructure, the
problem has circled back to the original finite element formulation and nothing has
been gained.

It appears that Option #2 has a potential to engage many processors simul-
taneously-the number probably in the samerange as in Option #1. It is important
to observe that Options #1 and #2 are synergistic, because fine-grained parallelism
may be used to speed up evaluation of each data point in a coarse-grained scheme.
When combined, these two options may have a multiplicative effect on the number
of processors that can be utilized concurrently. However, it does not appear likely
that even with that synergy the number of processors in the range 103to 10 6 could be

effectively operated in parallel.

Options #3 and #4 require examination of the code at hand to identify the code

segments that are independent of each other and, therefore, concurrently executable.

Depending on the result of the examination, the choice may be to modify the code

or to recreate it. Obviously, Options #3 and #4 have limited utility because they are

labor intensive, error prone, and unlikely to achieve a uniform processor work

distribution beyond relatively small number of processors. However, they may be

used on occasion for speeding up Options #1 and #2.

Finally, it appears that Options #1 and #4, especially when combined, may be

interim enablers of concurrent processing with the number of processors in the 10 3

to 10 4 range. To get beyond that range it will be necessary to pursue Option #5 that

calls for inventing new paradigms.

4.3 Current state of the art in algorithmic and application research

Three factors determine how to obtain optimal solutions to a given application in
the minimum time:

• the problem discipline specifics (structures, electromagnetics, acoustics and fluid

mechanics)
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• the matrix characteristics (dense/sparse, complex/real, indefinite/positive
definite, non-symmetric/symmetric)

• the equation solution algorithm (direct or iterative)

At the heart of structural analysis (consuming the lion's share of solution time) is a
method to solve large systems of matrix equations which approximate the
governing differential equations whether static or dynamic (eigensolution). These
equations involve matrices which are predominantly real, positive definite
symmetric and sparse.After initial experience with simple iterative methods, the
Structures community has migrated through a series of increasingly more effective
(faster) solution methods:

Linpack (dense) --) Skyline --) Banded --) Variable-band --) Sparse(order all) --)
Sparse(order subset)

Langley's equation solution research has led to a world-class General-Purpose Solver
(GPS),an extension to the Sparse (order subset) algorithm which solves large
systems of matrices with any/all of the matrix characteristics listed above. About 10
years ago (1989),a large application was a Shuttle-SRB analysis (54,870equations)
took 14minutes (13 secondswith Langley's fastest algorithm) on the fastest Cray
computer ($4M). Today the sameanalysis takes 3.4 secondson an SGI Origin2000
system ($0.3M). Even more important, a moderate size aircraft analysis (552,000
equations) took 53 secondson the Origin2000. Thus, we can project that ten years
hence, complex aircraft and spacecraft structural analyses involving 5-10 million
equations will take less than 1 minute.

Electromagnetic and Acoustic applications are similar to structures except that their
matrices are generally of COMPLEX data type and sometimes non-symmetric.
Traditionally, algorithms to solve Electromagnetic and Acoustic applications have
been iterative (time consuming), but lately the trend seemsto be to adopt faster
direct methods such as NASA's GPSsolver (http://transit.larc.nasa.gov/csb-
www/GPS.html) as larger memories are available.

Unstructured-grid solvers for viscous flows are now at a state of development
nearly on par with structured-grid solvers in terms of accuracy and convergence
rate. The large CPU and memory requirements are their drawbacks. However, the
advent of large parallel processors with large aggregate memory has enabled
calculations to be carried out that were heretofore impossible.

Current algorithmic research is largely focused on improving the convergence rate.
Multigrid methods are widely used to accelerateconvergence of the time-dependent
equations to a steady state. "Textbook multigrid" should allow convergence on the
order of a few multigrid cycles. However, when applied to the Navier-Stokes
equations and realistic configurations, 500 or more multigrid cycles are required,
even by the best solvers. Work is ongoing to understand, and correct, the disparity
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between the theoretical rates and those observed in practice. If successful, "textbook
multigrid" in a production CFD code could result in a 1-2 order reduction in
compute time, which may be leveraged with other means of compute-time
reduction, such as parallel processing.

Future algorithm research in all the above disciplines on the cutting-edge
applications will involve algorithms to harness the power of multiple processor
computers. It is likely that just as the structures community has refined methods
resulting in very fast direct methods, the same will occur in Electromagnetics and
Acoustics and then by Fluid Mechanics whether techniques such as the Lattice-Gas
Automata (LBA) and Lattice Boltzman Equation (LBE) [Luo 1998] methods are
effective or not. The advent of very large memories and multiple processors will
continue to drive down the solution time in the future even faster than they have
in the past 10years.

For traditional, i.e. PDE based methods, additional work will be required to develop
latency-tolerant methods. Optimization methods will need a even stronger focus,
particularly to make use of large numbers of processors. One such focus is likely to
be on the simultaneous analysis and design methods (SAND) that blend the state
and design variables in one vector that defines a single space.The state solution and
optimal design are searched for simultaneously in that space.

Among the non-traditional methods, such as the LGA and LBE methods, much
more work is required to extend the range of applicability of the methods, and to
demonstrate solution accuracy.

4.4 Non-PDE based analysis and optimization

Most of the engineering computing experience to date, and certainly almost all of

the LaRC experience, has been underpinned by mathematical modeling based on the

partial differential equations. That was usually adequate for most of the vehicle

physics where continuous functions and variables commonly occur, but will not be

sufficient when that physics is combined with the life-cycle considerations. In that

combination one will have to analyze phenomena that are partially continuous and

partially discrete, and optimize in a space of continuous variables as well as discrete

choices. Some of these phenomena have to be simulated as chains of discrete

events in time, e.g., the transactions for material supplies and product deliveries

that occur between the prime and sub-contractors.

As an example of a mixed, continuous-discrete problem, consider an aircraft wing

that may be made of a conventional riveted sheet-metal or of bonded composites.

Either case poses an analysis problem whose state space is divided by the discrete

onset of skin buckling into two subdomains, each of the two being internally

continuous. In the design space, however, the two types of constructions offer a

discrete choice between two dissimilar manufacturing methods. The natural
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approach, of course is to eliminate the continuous variables by the conventional
analysis and optimization methods and handle the remaining discrete parts by
specialized methods and human judgment.

Becausedesign with the life-cycle considerations is replete with choices such as the
above, the problem is combinatorial explosion. Fortunately, the large number of
concurrently operating processors in synergy with intrinsically discrete methods
such as Genetic Programming may keep that explosion under control.

4.5 Human interface with emphasis on visualization

It is said people receive about 90% of information through the sense of vision.

Therefore, the focus herein is on visualization, although it is acknowledged that the

use of the sense of hearing in the human interface is on the rise, and the sense of

touch begins to be utilized as well. Massively parallel processing is seen both as the

source of enormous volumes of data to be visualized and as a means by which to

achieve an effective visualization. This was one of the reasons why the Department

of Energy and National Science Foundation have recently held a series of joint

workshops [Smith and Van Rosendale 1998] on manipulation and visualization of

large scientific data sets.

The workshop deliberations reflected the dramatic increase in the volume and

complexity of scientific data being produced and stored for analysis. However,

current tools for graphics and visualization have lagged behind that increase. The

workshop series final report examines the state of the art and provides the

technology roadmaps of the various components required for visualization of

scientific data [Smith and Van Rosendale 1998]. They also characterize the

requirements of the scientific community and provide a detailed list of challenges

both in hardware and software technologies that need to be overcome to meet the

needs of the scientific community. To quote one of the findings of the report [Smith

and Van Rosendale 1998]:

"The development of scientific data manipulation and visualization

capabilities requires an integrated systems approach and solution. Such

a system must include the end-to-end flow of data from generation to

storage to interactive visualization, and must support data retrieval,

data mining and sophisticated interactive presentation and navigation

capabilities."

Even though the DVC report focuses on applications of interest to DOE and NSF,

there is enough overlap to make the findings relevant to NASA needs.
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4.6 Impact of distributed computing

The design of aerospace systems, as evidenced by the user scenarios discussed in

Section 2 and detailed in the appendix, are becoming increasingly complex requiring

teams of discipline experts to cooperate with each other in the solution process.

Recent advances in distributed computing environments will allow scientists and

engineers to bring disparate and multiple resources including data bases, hardware

instruments, computing units and visualization engines, together to solve the

larger problem at hand. Such environments will allow geographically distributed

teams of users to collaborate on a single task thus making them more effective and

productive. Such collaboration will be possible throughout the design process

including the initial design, the simulations and the analysis of the results. Thus,

for example, engineers from different disciplines could collaboratively steer the

simulation to produce better results faster. Also, teams of engineers could use a

collaborative tool in order to simultaneously access and visualize the results of the

simulations. Similarly research being done in the arena of intelligent agents will

allow users to utilize the capabilities of the underlying systems in a more intelligent
and effective manner.

Distributed collaborative environments are fundamentally different from the

current environments being utilized by engineers and will require not only the

development of the underlying software technologies to support the infrastructure

but also a change in the manner in which the engineers use these tools. However, it

is clear that such environments can engender dramatic improvements in the

overall design cycle by allowing the engineers to more effectively use the underlying
resources.
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5.0 Findings and Recommendations

This section summarizes the UCT findings and recommendations based on the

information and discussions reported in the preceding sections.

5.1 Findings

• Acting within its time and resource constraints, the Ultrafast Computing Team

has assessed the range of pertinent information regarding engineering design

computing

• evaluated the technical requirements required for engineering computing using
User Scenarios focused on an advanced aircraft and reusable launch vehicle

applications

• reviewed the trends in computer hardware and software

• identified actions to be taken in order to exploit in engineering computing the

opportunities likely to be created by the above trends

• recommended formation of a team at LaRC to implement the above actions.

Engineering computing needs vs. Computer Technology progress

The times to solution in many engineering problems that arise in context of design

far exceed of what is required to meet the current and future advanced vehicle

design needs. They also fall far short of the goals derived from the NASA 3 Pillars

strategy.

Rapid progress of the general purpose computer technology will continue toward a

heterogeneous environment in which the spectrum of computers will range from

single processor machines to multiprocessor ones. The number of processors in the

latter will likely to increase into hundreds of thousand, and may even exceed a

million. High speed, intelligent networks will unify the heterogeneous computer

architectures, including special purpose computers dedicated to a specific task, to

present a single virtual computer to the user.

To exploit the multitude of new computer architectures, and to exert influence on

development of these architectures, the present computing tools in engineering

analysis and synthesis will have to be tailored to fit the architecture(s) most suitable

to the class of problems these tools are for. Wherever a fit cannot be achieved but

potential gains are substantial, new paradigms of computing will have to be

invented. The roots of the new paradigms may have to go deep into the underlying

physics and foundations of those problems where the needs are acute for radically

faster solutions. It is apparent that doing that well will require long lead times and

large investment.
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How to get engineering computing to ride the wave of the future in computer

technology

The engineering computing market is small relative to that in business and enter-

tainment. Therefore, it constitutes a niche where the Government seed money

might make a real difference.

The situation calls for the following actions to be taken at LaRC:

1) In the interdisciplinary arena, one should continue to

• monitor, understand the new computer hardware and software technologies
and architectures

• develop an understanding of the capabilities that are likely to be delivered by

the commercial development regardless of the Government actions

• influence development of the new computer hardware and software technol-

ogies and architectures

develop understanding of the match between various types of engineering

computing jobs and various computer architectures, and the match

frequencies

• formulate the need for new developments at the integrating framework level

and at the disciplinary level in particular discipline

• formulate standards and requirements as needed by the tool integration,
MDO environment, and the new architectures

develop methods for effective utilization of the system analysis and MDO for

various classes of the new architectures, taking into consideration the

computing load balancing among the processors

• recommend long term investment strategy based on the above information

• foster & coordinate disciplinary developments and application projects

• facilitate education and training

2) In each disciplinary domain, one will need to

• commit to gearing-up to the exploitation of new computer architectures in
hardware and software.

• reexamine and restructure the disciplinary algorithms, and to develop new

paradigms where needed, accounting fully for MDO
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• formulate local disciplinary standards and requirements compatible with the
ones established in the interdisciplinary arena

• develop and validate the restructured algorithms and the new paradigms,
implementing the standards and requirements

3) In both the interdisciplinary and disciplinary arenas, one should
• Validate new algorithms
• Demonstrate benefits

• Foster technology transfers to industry users

5.2 Recommendations

The above actions may be carried out by an interorganizational, project-based, team

formed to foster the incorporation of advanced high performance computing into

aerospace design processes.

The character and charter of the team, called Computational Engineering Team

(CET), would be:

. An expanded version of the CAS team. The CAS team model is proven and well

suited to this kind of activity. The funding should be drawn from the programs

such as HPCCP/CAS, ASPO, and ISE, as well as the base research.

. CET would have a core to perform the interdisciplinary functions described in #1

and #3 above. It would fund and coordinate the disciplinary organizations to

perform the disciplinary functions described in #2 and #3 in the preceding
section.

3. In performing the above functions, CET would:

3.1 Monitor and investigate current and projected advances in CPU speed,

networking, storage, system software, and applications support software (e.g.

visualization)

3.2. Support the application of current high performance computing techniques to

legacy discipline codes. Discipline-oriented branches would receive either

funds or contractor support for the conversion of their codes. More

concentration needs to be applied to everyday applications, not just grand

challenges currently named in the CAS Program.

3.3. Organize and fund demonstration projects, like the current HSCT4.0, that cross

discipline boundaries.
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3.4. Support basic research into new, innovative methods that exploit the advances

in IT (a la the current NRA grants). The research could be performed at LaRC,

other government facilities, industry, and academia. Demonstrate the new

methods as replacing or augmenting legacy codes.

3.5 Implement major elements of the ISE Program

3.6. Advocate, to the IT community, the development of capabilities

that would be of particular benefit to engineering applications
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Appendix

A.1 User Scenario 1: A Supersonic Transport Case

An emerging practice aimed at ensuring software systems do what the customer

intends them to do is becoming known as "Use Case Scenarios". A Use Case is a

textual description of the process the customer is asking the software system to do.

The Use Case can include graphical representations of processes that enhance the

text. The output of the Use Case provides a common platform for both the software

developer and the customer to interact on. Once the objective is understood, the

analysis of the requirements inherent in the Use Case can commence. From here, a

software development process coupled with appropriate prototypes (Spiral Develop-

ment) can take over.

The Use Case is a process for the customer and the developers to communicate.

through this mechanism that an architecture will be developed, validated and

extended. The following example is a Use Case for the IPG.

It is

USE CASE NAME:

USE CASE NUMBER:

AUTHOR(s):

CREATION DATE:

REVISION DATE:

Whole Aircraft

101

NASA LaRC CAS Team and LeRC IPG Team

970904

ABSTRACT:

This use case describes how a User would execute an optimization of an elastic

airframe with engines attached using the IPG across the US with Multi-Company

participation and viewing. The case involves codes in aerodynamics, structures,

propulsion, aircraft performance, and optimization, all integrated and executing in

both analysis and optimization modes.

ASSUMPTIONS:

0) A supersonic transport aircraft is at an early Preliminary Design stage. The project

is conducted by a partnership of several major, geographically dispersed companies.

The week of September 12, 2011 is a "downselect" period when the partnership must

choose between two proposed alternative configurations A and B.

Configuration A is a tailless canard with two engines X. Configuration B is a

conventional configuration with four engines Y. Before the week begins, each

configuration had been defined including airframe detailed design variables (e.g.,

cross-sectional structural dimensions, airfoil camber) and major design variables

(e.g., wing sweep angle, aspect ratio) but had not been optimized yet. As well as

propulsion detailed design variables (e.g. Compressor Pressure Ratio, # of
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compressor stagesand blade rows, and major design variables (e.g.thrust, weight,
specific fuel consumption, engine and spool RPM, fuel flow rate) but had not been
optimized yet either. The performance objective to be maximized is the range for a
given payload under all the disciplinary constraints.

The partnership has a week: to bring A and B to the same level of optimality, to
evaluate the results including their economics, to select A or B.
The choice will hinge on small differences of large numbers in multidisciplinary
trades, e.g., drag vs. weight, hence a high fidelity of analysesis important.

1) The distributed (geographically dispersed) simulation of the aircraft
aerodynamics, structures, propulsion, life-cycle economics, and aircraft performance
is comprised of a known number of codes.The codes are equipped in a sensitivity
analysis, that is they can compute derivatives of output with respect to input.

2) In addition to disciplinary codes there are

- a library of optimizers (codes that search design spaces).

- utilities to assist in optimization, e.g., response surface generators, neural net
codes.

- an agreed-upon MultiDisciplinary Optimization (MDO) method implemented

as a script to sequence the codes.

3) There is a separate engineering group for each of the following: aerodynamics,

structures, propulsion, life-cycle economics, and aircraft performance. Each group

belongs to a different company. The aircraft performance group acts as a "chief

designer" to manipulate major design variables of both the airframe and engine as

needed toward meeting the design objectives.

4) Each engineering group has an autonomy over their codes for analysis and local

optimization, and over formulation of their constraints.

5) One additional company is viewing the analysis but not directly participating.

6) All output and input is seen by all parties at the same time.

7) Security is in place to prevent unexpected intrusion into the simulation while

allowing data to flow freely.

8) The participants use a mix of workstations and supercomputers, adding up to

tens of thousands of simultaneously accessible processors with memories to
match.

9) Companies are spread across the US
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ACTORS:

1) Engineers at the partnership companies

2) Viewer/customer at another site

PROCESS OVERVIEW:

0) The site of the aircraft performance group is the prime coordinator of the design

optimization.

1) The processes for A and B are being conducted independently with a degree of

concurrence at the discretion of the partners.

2) Each process is an iteration alternating between the analyses and optimizations

conducted concurrently within each group specialty domain using local design

variables, and the system-level optimization executed by the performance group

when returns from the groups are available.

3) The process preserves couplings among the disciplines by routing output to input

between the codes so that any local or major design change may propagate

throughout the system. Examples of the couplings are: aerodynamics-structures in

aeroelasticity, propulsion-aerodynamics-structures, all disciplines-life-cycle
economics.

4) The type of information produced by the groups and the detailed logic of the

process are prescribed by the agreed-upon MDO method.

5) The process is interactive both at the group level and the system level so that the

windows into the process progress are open and decision points are provided for.

The actors work in a "mission control room" environment with numerous displays

and means to communicate with each other. Using these means they:

- ask "what if" questions, each of which might initiate additional analyses and

optimizations.

- accept or reject the process output,

- intervene into the process by adding and deleting the design variables and

constraints, modifying the assumptions, and generally imposing their

judgment on the process as they see fit. Imposition of judgment assures that

the subjective, non-quantifiable, and discrete-choice aspects of design are fully
facilitated.

6) When A and B are both optimized to reach their potential, the partners compare

both, drawing to any depth of detail on the data produced and archived in the

process, and asking additional questions that may trigger repetitions of some

portions of the process. They make their choice between A and B when they feel

they have all the information to support it.
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COMPUTING REQUIREMENTS:

1) CFD, NS-level, entire configuration analysis with derivatives of output to input
turn-around - under 1 minute

2) Structural analysis, FEM-level, entire airframe of about 100K EDOF, 1000 loading

cases, with derivatives of output to input turn-around - under 10 sec.

3) Propulsion, CFD, NS-Level 3Dimensional Transient simulation of Full engine

with Numerical Zooming and MD coupling within 1 minute to match surrounding

simulation optimization time.

4) Simulation of dynamic phenomena, e.g., the vehicle handling, closely to the real
time scale.

5) Other disciplines turn-around - nearly instantaneous.

6) Visualization and Virtual Reality capability to support real time movies to display

dynamic phenomena: at least 24 frames/sec on high resolution screens.

Implication: tens of thousands processors available and engineering analysis codes

capable of exploiting that parallelism.

7) Flexibility to "shift gears" between codes of different fidelity to trade computing

cost for accuracy, and to change from one MDO method to another.

FREQUENCY/DURATION OF INVOCATION:

1) Complete the round of concurrent disciplinary operation in under 60 minutes.

2) Complete the collaborative system-level optimization and assessment of the

results before committing to the next round of disciplinary optimizations in
under 90 minutes.

3) Sustain a pace of 4 to 5 cycles in a working day, each cycle entailing #1 & 2 above.

4) Obtain answer to a minor "what if" question in less than 10 seconds

5) Obtain an answer to a major "what if" question in less than 2 minutes.

PARTICIPATING OBJECTS:

1) Data objects for analysis and optimization.

2) Specific disciplinary codes.

3) Optimization codes

4) Script implementing an MDO method.

5) Utility codes to visualize and to control the process
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A.2 User Scenario 2: A Reusable Launch Vehicle Case

An emerging practice aimed at ensuring software systems do what the customer

intends them to do is becoming known as "Use Case Scenarios". A Use Case is a

textual description of the process the customer is asking the software system to do.

The Use Case can include graphical representations of processes that enhance the

text. The output of the Use Case provides a common platform for both the software

developer and the customer to interact on. Once the objective is understood, the

analysis of the requirements inherent in the Use Case can commence. From here, a

software development process coupled with appropriate prototypes (Spiral

Development) can take over.

The Use Case is a process for the customer and the developers to communicate. It is

through this mechanism that an architecture will be developed, validated and

extended. The following example is a Use Cases for the Fast, Efficient Design Tools.

USE CASE NAME:

USE CASE NUMBER:

AUTHOR(s):
CREATION DATE:

REVISION DATE:

Reusable Launch Vehicle

203

NASA LaRC FED Team

981105

ABSTRACT:

This use case describes how a User would carry out a particular operation in the

design process of an RLV with multi-company participation and viewing. The

design process includes a wide range of the mission architectures and the entire life-

cycle of the vehicle. The range of missions includes unmanned payloads as well as

manned ones. Therefore, although the vehicle control is automatic but it provides

for a human pilot override option. The case involves codes in life-cycle, component

and payload packaging, aerodynamics, including rarified atmosphere reactive flow,

structures, including hot structures, propulsion, vehicle performance, including

trajectory, heat transfer, and optimization, all integrated and executing in both

analysis and optimization modes. The case was selected to require switching

between the degree of detail characteristic for the Detailed Phase and the Conceptual

Phase of the design process. Such switching is often necessary when new

information is generated at the detail level that might suggest revisions of the

major configuration decisions that had already been made early in the design

process.
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ASSUMPTIONS:

0) An RLV is at an early Preliminary Design stage. The project is conducted by a

partnership of several major, geographically dispersed companies. The week of

September 13, 2020 is a "downselect" period when the partnership must choose

between two proposed alternative configurations A and B.

Configuration A is a Single-Stage-To-Orbit, Vertical Take-Off, Horizontal-Landing,

Hybrid-Airbreathing vehicle. Configuration B is a Horizontal Take-Off with

Electromagnetic Assist, Expendable Booster, Horizontal Landing vehicle. Before the

week begins, each configuration had been defined including detailed design

variables (e.g., cross-sectional structural dimensions, wing airfoil, details of

propulsion) and major design variables (e.g., wing sweep angle, aspect ratio, body

major dimensions and proportions, thrust-to-weight ratio, manufacturing and

operations variables) but had not been optimized yet.. The performance objective to

be maximized the return on investment over the life of the vehicle, including the

assumptions of 10 years and 36 launches per year. The return on investment must

account for the life-cycle economics.

The partnership has a week: to bring A and B to the same level of optimality, to

evaluate the results including their economics, to select A or B.

The mission profitability, and the corresponding ROI, will hinge on small

differences of large numbers in multidisciplinary trades, e.g., structural weight vs.

structure cost. This trade-off must account for the structural weight effect on the

propulsion required and its influence on the vehicle gross weight and total cost,

hence a high fidelity of analyses is important.

The task is made more complicated by the discovery in the aeroelastic analysis that

in Configuration A the structural displacements of the vehicle nose is excessive in a

way it displaces the shock wave impinging on the engine inlet. An attempt to fix the

problem by structural optimization led to excessive structural weight penalty,

therefore, an alternative of relocating the engine to make it less sensitive to the

nose-generated shock wave is under consideration. However, to assess fully the

benefit of that alternative one has to return to the Conceptual Stage in order to

modify the configuration.

1) The distributed (geographically dispersed) modeling of the life-cycle, component

and payload packaging, aerodynamics, including rarified atmosphere reactive flow,

structures, including hot structures, propulsion, vehicle performance, including

trajectory, heat transfer, and optimization comprises a known set of codes. The codes

are equipped with sensitivity analysis, that is they can compute derivatives of

output with respect to input.
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2) In addition to disciplinary codes there are available

- a library of optimizers (codes that search design spaces).

- utilities to assist in optimization, e.g., response surface generators, neural net

codes, data base(s).

- an agreed-upon MultiDisciplinary Optimization (MDO) method implemented

as a script to sequence the codes.

- software framework (commercially available with maintenance) that ties the
codes and utilities in a unified tool users can interact with. The tool can be

commanded to execute the selected MDO script.

3) The modeling and design-decision making is distributed over the participating

companies. The mission architecture group acts as the "chief designer" to

manipulate major design variables of both the airframe and propulsion and those of

the life-cycle as needed toward meeting the design objectives. This group identifies

the major "what if" questions and design variables. Where appropriate it delegates

to the specialists determination of the answers to these questions and the effects of

the design variables.

4) Each engineering group has an autonomy over their codes for analysis and local

optimization, over formulation of their constraints, and over their local

optimization methods .

5) One additional party is monitoring the design process by observing the data

generation and the data evolution without directly intervening in the process.

6) All output and input can be seen by all parties may look at all the inputs and

outputs at the same time.

7) Security is in place to prevent unexpected intrusion into the process while

allowing data to flow freely.

8) The participants use virtual computers, adding up to tens of thousands of

simultaneously accessible processors with memories to match.

9) Companies are spread over the world.

ACTORS:

1) Engineers at the partnership companies

2) Viewers / customers/regulatory agency monitors at other sites.
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PROCESS OVERVIEW:

0) The site of the mission architecture group is the prime coordinator of the design

optimization.

1) The processes for A and B are being conducted independently with a degree of

concurrence at the discretion of the partners.

2) The key feature of the process is the way in which it enables the engineers to

exercise to the fullest their ingenuity to deal with the numerous, discrete choices

and judgment-dependent, difficult-to-quantify, issues that arise in design. To

support such high-level decision making, the system automatically analyses and

optimizes all the detailed design variables where the relations are continuous and

the optimizations may be executed without human intervention. The system has

enough intelligence built-in to keep such optimizations within the bound of

assumptions and to alert engineers when the results "bump" against those bumps.

The system has also operational flexibility to enable the mission architecture group

to delegate detailed investigation to generate information needed at the mission

architecture level. The detailed investigations (analyses & optimizations) are

performed at the appropriate detail level, off-line as far as the mission architecture is
concerned.

3) Each process is an iteration alternating between the analyses and optimizations

conducted concurrently within each group specialty domain using local design

variables, and the system-level optimization executed by the performance group

when returns from the groups are available.

4) The process preserves couplings among the disciplines by routing output to input

between the codes so that any local or major design change may propagate

throughout the system. Examples of the couplings are: aerodynamics-structures in

aeroelasticity, propulsion-aerodynamics-structures, all disciplines-life-cycle
economics.

5) The type of information produced by the groups and the detailed logic of the

process are prescribed by the agreed-upon set of standards and protocols that reflects

an MDO method selected. Engineers are enabled to intervene into the process logic.

6) The process is interactive both at the group level and the system level so that the

windows into the process progress are open and decision points are provided for.
The actors have access to a "mission control room" environment with numerous

displays and means to communicate with each other. Using these means they:

- ask "what if" questions, each of which might initiate additional analyses and

optimizations.

- accept or reject the process output,
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- intervene into the process by adding and deleting the design variables and
constraints, modifying the assumptions, and generally imposing their
judgment on the process as they seefit. Imposition of judgment assures that
the subjective, non-quantifiable, and discrete-choice aspectsof design are fully
facilitated.

7) The software supporting the process allows a high degree of "computing agility", a
capability of switching easily between the models of various levels of fidelity and
resolution. This enables one to move back and forth over the entire spectrum of the
design phases,Conceptual to Detailed and back again, asthe need arises.

8) The Product Data Model includes a master geometry model and a multitude of
models that simulate various aspectsof design and the life-cycle, all dependent on
the master model. Whenever the master model changes, all the dependent models
follow automatically. These models are smart enough to recognize when the master
model change may be pushing them beyond the constraints and to automatically
adjust or to alert the engineer.

9) When A and B are both optimized to reach their potential, the partners compare
both, drawing to any depth of detail on the data produced and archived in the
process,and asking additional questions that may trigger repetitions of some
portions of the process.They make their choice between A and B when they feel
they have all the information to support it.

FUNCTIONALITIES REQUIRED:

0) Assumption: tens of thousands processors available and engineering analysis

codes capable of exploiting that parallelism.

1) CFD, NS-level, including rarified atmosphere reactive flow, entire configuration

analysis with derivatives of output to input turn-around, under 1 minute

2) Structural analysis, FEM-level, entire airframe of about 100K EDOF, 1000 loading

cases, with derivatives of output to input turn-around, including heat transfer and

hot-structures, under 10 sec.

3) Propulsion, including solid booster, electromagnetic propulsion, and airbreathing

propulsion, 1 minute to match surrounding simulation optimization time.

4) Simulation of dynamic phenomena, e.g., the vehicle handling, close to the real
time scale.

5) Modeling of the life-cycle elements other than the vehicle physics, taking into

account the predominantly discrete and statistical nature of these elements in
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elapsed times comparable to those achieved for the vehicle physics modeling. This
includes the analysis of cost and revenue necessaryfor assessmentof the ROI.

6) Other disciplines turn-around - nearly instantaneous.

7) Modeling of the management of the design process in elapsed times comparable
to those achieved for the vehicle physics modeling.

8) Use of intelligent agents for continual monitoring of the process, information
gathering, warnings about unexpected conditions arising in the process, and making
routine decisions.

9) Visualization and Virtual Reality capability to support real time movies to display
dynamic phenomena: at least 24 frames/sec on high resolution screens.

10) Immersive capability enabling virtual walk throughout the mission architecture
and its execution in time; peeling off the external parts of the vehicle to look inside,
and invoking analysis by touching the part of the vehicle and pointing to the
computing tool to be applied to that part.

11) Flexibility to "shift gears" (computing agility) between codes of different fidelity
to trade computing cost for accuracy, to return from the Detailed stage to the
Conceptual one as the need requires, and to change from one MDO method to
another.

FREQUENCY/DURATION OF INVOCATION:

1) Complete the round of concurrent disciplinary operation in under 60 minutes.

2) Complete the collaborative system-level optimization and assessment of the

results before committing to the next round of disciplinary optimizations in
under 90 minutes.

3) Sustain a pace of 4 to 5 cycles in a working day, each cycle entailing #1 & 2 above.

4) Obtain answer to a minor "what if" question in less than 10 seconds

5) Obtain an answer to a major "what if" question in less than 2 minutes.

PARTICIPATING OBJECTS:

1) Data objects for analysis and optimization:
• Mission Architecture

• RLV

• RLV Life-Cycle.

2) Specific disciplinary codes, including the life-cycle and its economics..

3) Optimization codes

4) Script implementing an MDO method.

5) Utility codes to visualize and to control the process
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6) Software framework to tie codes and utilities into a single tool, spanning the
geographically dispersed sites, and accommodating a variety of physical computing
platforms.



48

A.3: Real Time Simulation and Animation.

Analysis, as well as visualization, divides into two modes or classes of study and

presentation. These are variously described as Static and Dynamic - or alternatively,

Steady State and Time Dependent. Static (steady state) can be characterized as a single

solution per analysis initial conditions. Dynamic (time dependent) generally

requires many solutions because usually it is necessary to discretize the time

dimension (as well as the physical dimensions). Various methods may be employed

to display the static solution. In contrast, the dynamic solution is most often dis-

played as an animation, consisting of a number of time steps, displayed as a movie.

The dynamic case places a much greater calculation load on the computer. There is

no simple answer to the ratio of computations for dynamic versus static.

As an initial example, for 24 images per second and two minutes of animation, 2,880

solutions (24"120) will be required. For this simple example, the demands on the

computer would be nearly 3,000 times as many operations. It is not generally that

simple. Each frame of the dynamic simulation is mathematically equivalent to the

single steady state solution. For the static solution, let assume that it takes 500

iterations to converge. For a dynamic solution, each succeeding result is close to the

previous. As a result the steps to converge may not require any more operations

than one iteration. Thus the 2,880 frames could take only about six times the

computing effort as the static case. The time steps for good animation may not

correspond to the time step size needed for good convergence or an appropriate

animation rate. Frequently it becomes necessary to calculate many more solutions

than are displayed. This might mean that four time steps are used for each frame,

with three thrown away for each one saved. Then in this example, the dynamic

solution would require about 2,400 times as much compute time as the static.

The scenarios place demands upon the computer for the static problems that are

severe or beyond present computers to produce solutions within minutes. Thus the

dynamic cases are well above this and become critical in sizing the computer system.

(The storage of the solutions for a series of dynamic animations becomes exceeding

large also.) If this were the whole story, doing dynamic simulations would become

out of the question.

Currently, however, the calculations can be done in a batch mode in a three step

process and then the results shown in "real time". This method would have to be

reviewed for the scenarios because of the demand for interaction, but it is likely that

instead of a speed up ratio of for example, of from two hours to 24 per second and

one frame to 3,000 frames calculated (2"60"60"24"3,000=518,400,000) a solution per

minute would reduce the computer rate by a factor of 1,440 (60*24). There are other

factors to consider for the real time aspects of the scenarios.

A CFD static problem, as an example, often involves a pre-processing step of grid

generation, a second step of solution calculation, and a third post-processing step to
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convert the solution into parameters suitable for visualization. The first step may
only be involved once per a given geometry. The second step is done many times
for different conditions. The third step is done many times from different aspects
for solutions that are deemed "valid". For the dynamic case,an additional step is
needed for the animation. This can be done interactively if the viewer can specify
the animation viewpoint and model dynamics needed to visualize the simulation.
Therefore with careful planning, it may be possible to handle the dynamic situation
within the computation limits of a petaflop (1015ops./sec.) system that will easily
handle static cases.
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